Bacteriology

Lecture 6

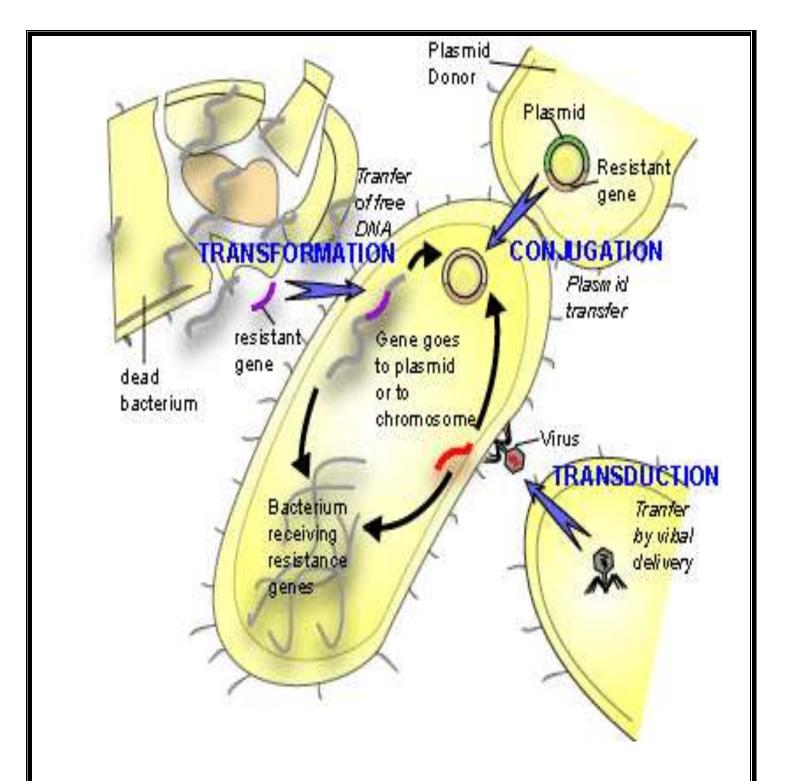
Dr. Basim Mohammed Hanon

Antimicrobial Agents or Antibiotics and Chemotherapeutics Agents

The current era of antimicrobial chemotherapy began in 1935 with the discovery of the sulfonamides. In 1940, it was demonstrated that penicillin, discovered in 1929, could be an effective therapeutic substance. During the next 25 years, research on chemotherapeutic agents centered largely on substances of microbial origin called antibiotics

U	An antibiotic is a selective poison . It has been chosen so that it will kill the
	desired bacteria, but not the cells in your body.
	Each different type of antibiotic affects different bacteria in different ways.
	For example, an antibiotic might inhibit a bacteria's ability to turn glucose into
	energy, or the bacteria's ability to construct its cell wall. Therefore the bacteria
	dies instead of reproducing.
	Antibiotics substances produced by various species of microorganisms: bacteria,
	fungi, to suppress the growth of other microorganisms and to destroy them.
	Today the term antibiotics extends to include synthetic antibacterial agents: ex.
	sulfonamides and quinolones.

Source of antibiotics?


- ☐ Several species of fungi including *Penicillium* and *Cephalosporium* E.g. penicillin, cephalosporin
- ☐ Species of Actinomycetes, Gram positive filamentous bacteria. Many from species of *Streptomyces*. Also from *Bacillus*, Gram positive spore formers. A few from Myxobacteria, Gram negative bacteria.
- ☐ New sources explored: plants, herbs, fish.

Selective toxicity

Antimicrobial drugs act in one of several ways: by selective toxicity, by inhibition of cell membrane synthesis and function, by inhibition of protein synthesis, or by inhibition of nucleic acid synthesis.

Basi	c principles of antimicrobial therapy
	Chemotherapy = the use of chemicals against invading organisms (ie
	bacteria). The term is used for both treatment of cancer and treatment of
	infection.
	Antibiotic = a chemical that is produced by one microorganism and has the
	ability to harm other microbes.
	Selective toxicity = the ability of a drug to injure a target cell or organism
	without injuring other cells or organisms that are in intimate contact.
Clas	sification of antimicrobial drugs by susceptible organisms
	Antibacterial drugs (narrow and broad spectrum). Examples: Penicillin G,
	erythromycin, cephalosporins, sulfonamides.
	Antiviral drugs (examples : acyclovir, amantadine)
	Antifungal drugs (examples: amphotericin, ketoconazole)
<u>Cla</u>	ssification by mechanism of action
	Drugs that inhibit bacterial wall synthesis or activate enzymes that disrupt
	the cell wall.
	Drugs that increase cell membrane permeability (causing leakage of
	intracellular material)
	Drugs that cause lethal inhibition of bacterial protein synthesis.
	Drugs that cause nonlethal inhibition of protein synthesis (bacteriostatics).
	Drugs that inhibit bacterial synthesis of nucleic acids.
	Antimetabolites (disruption of specific biochemichal reactions>decrease
	in the synthesis of essential cell constituents).
	Inhibitors of viral enzymes.
Acqu	ired resistance to Antimicrobial drugs.
Mech	nanisms:
	Microbes may elaborate drug-metabolizing enzymes (ie penicillinase).
	Microbes may cease active uptake of certain drugs.

☐ Microbial drug receptors may undergo change resulting in dec	reased
antibiotic binding and action.	
☐ Microbes may synthesize compounds that antagonize drug actions .	
How is resistance acquired?	
A) <u>Spontaneous mutation</u>	
B) Acquired Mutation	
• <u>Vertical</u>	
• <u>Horizontal</u>	
• <u>Transformation</u>	
• <u>Transduction</u>	
• <u>Conjugation</u>	
Dr. Basim Mohammed Hanon	Page "

Use of antibiotics PROMOTES the emergence of drug-resistant microbes.

Suprainfection (or supeinfection): a new infection that appears through the course of treatment for a primary infection

Delaying the emergence of resistance

- 1) Use antimicrobial agents only when needed.
- 2) Use narrow-spectrum antibiotics whenever possible.
- 3) Newer antibiotics should be reserved for situations in which older drugs are dangerous or no longer effective.

SELECTION OF ANTIBIOTICS

Factors to take into consideration:

- 1) The identity of the **infecting organism**.
- 2) **Drug sensitivity** of the infecting organism.
- 3) **Host factors** (ie site of the infection, status of host defenses).

Empiric therapy prior to completion of lab tests:

It may be necessary to begin treatment in patients with serious infections BEFORE the lab results.

Take samples for culture PRIOR TO INITIATION of treatment.

Host factors

Host defenses (immune system and phagocytic cells).
Site of infection .To be effective an antibiotic must be present in the site of
infection in a concentration greater than MIC (endocarditis, meningitis,
abscesses)
Age (infants and elderly highly vulnerable to drug toxicity).
Pregnancy and lactation
Previous allergic reactions
Genetic factors (ie hemolysis in patients with G-6PD deficiency if given
sulfonamides).

Antibiotic combinations:

The result may be additive, potentiative or antagonistic.

<u>Additive response</u>: one in which the antimicrobial effect of the combination is equal to the sum of the effects of the two drugs alone.

<u>Potentiative interaction</u>: one in which the effect of the combination is GREATER than the sum of the effects of the individual agents.

Antagonistic response: in certain cases the combination of two antibiotics may be less effective than one of the agents by itself (ie combination of a bacteriostatic with a bactericidal drug).

PENICILLINS

Mechanism of action: the drugs weaken the cell wall, causing the bacterium to take
up excessive amounts of water and then rupture.
Penicillinases (Beta-lactamases):
Enzymes that cleave the beta-lactam ring and thereby render penicillin and other beta-
lactam antibiotics inactive.
Classification:
☐ Narrow-spectrum (penicillinase sensitive)
☐ Narrow-spectrum that are penicillinase resistant (antistaphylococcal)
☐ Broad-spectrum penicillins (aminopenicillins).
☐ Extended-spectrum penicillins (antipseudomonal)
Antimicrobial spectrum: active against most gram-positive bacteria, gram-negative
cocci (ie neisseria meningitis) and spirochetes. With few exceptions gram-negative
bacteria are resistant.
Therapeutic uses:
☐ Pneumonia and meningitis caused by Streptococcus pneumonia
☐ Pharyngitis caused by Streptococcus Pyogenes
☐ Infectious endocarditisis (Streptococcus viridans)
☐ Gangrene ,tetanus
☐ Syphilis (treponema pallidum).
Side Effects and toxicities:
☐ Pain at the site of injection, neurotoxicity with too high plasma levels. Inadvertent
intra-arterial injection can produce severe reactions (gangrene, necrosis) and must
be avoided
☐ Penicillin are the most common cause of drug allergy (1-10% of the patients will
experience an allergic response). There is no direct relationship between the size
of the dose and the intensity of allergic response.
Cross-sensitivity:
• 5-10% of patients allergic to penicillins are also allergic to cephalosporins.
• Penicillinase-resistant penicillins (Antistaphococcal).
• Resistant to beta-lactamases. Examples: Methicillin, Nafcillin.

| Page ₹

Dr. Basim Mohammed Hanon

• Broad-spectrum penicillins. (Aminopenicillins)					
☐ Ampicillin (Bordetella pertussis, E. Coli, Salmonella, Shigella).					
☐ Most common adverse effects : rash and diarrhea.					
Cephalosporins					
The drugs are beta-lactamic antibiotics similar in structure and actions with					
penicillins. Broadspectrum antibiotics with low toxicity.					
Mechanism of action: disruption of cell wall synthesis and consequent lysis of the					
cell.					
<u>Classification:</u>					
☐ First generation : highly active against gram-positive bacteria (staphylococci).					
☐ Second-generation: enhanced activity against gram-negative bacteria.					
☐ Third-generation: more active against gram negative aerobes (important					
activity against Pseudomonas Aeruginosa).					
☐ Fourth generation: highly resistant to betalactamases. Broad spectrum					

<u>Therapeutic uses:</u> first and second generation are rarely drugs of choice for active infections. Third generation agents have qualities that make them the preferred agents for several infections (Pseudomonas aeruginosa, nosocomial infections, gonorrhea, proteus).

Other inhibitors of cell wall synthesis

Imipenem

antibiotics.

Relatively new beta-lactam antibiotic with very broad spectrum.

Antimiocrobial spectrum: highly active against gram-positive and gram-negative cocci. It is also the most effective beta-lactam antibiotic against anaerobic bacteria.

Vancomycin

It is used only for serious infections due to toxicity

<u>Principal indications</u>: antibiotic-associated pseudomembranous colitis (Clostridium difficile), infection with methicillin-resistant Staphylococcus aureus.

Bacteriostatic inhibitors of protein synthesis

<u>TETRACYCLIN</u>

☐ Broad specterium antibiotics.				
☐ Mechanism of action supression of bacterial growth by inhibiting protein synthesis.				
Therapeutic uses.				
☐ Treatment of infectious diseases (rickettsial diseases> Rocky mountain spotty				

fever, typhus fever, Q fever, infections caused by chlamydia trachomatis, brucellosis, cholera, pneumonia caused by Mucoplasma pneumonia, gastric infections with Helicobacter Pylori).

☐ Treatment of Acne (orally and topically for severe acne vulgaris).

☐ Peptic ulcer disease (combination of tetracyclines, metronidazole and bismuth salicylate against Helicobacter Pylori).

Absorption: the drugs should NOT be administered together with calcium supplements, milk products, iron supplements,

MACROLIDES

Erythromycin

Mechanism of action: inhibition of protein synthesis.

Antimicrobial spectrum: (similar to penicillins) effective against most grampositive bacteria and against some gram-negative.

Therapeutic uses

- 1) Legionella pneumophila pneumonia (legionnaires' disease).
- 2) Whooping cough (Bordetella Pertussis)
- 3) Corynebacterium diptheriae (Diptheria)
- 4) Chlamydial infections
- 5) Mucoplasma pneumoniae pneumonia.
- 6) Alternative to Penicillin G in patients with penicillin allergy.

CLINDAMYCIN

<u>Mechanism of action:</u> inhibition of protein synthesis.

Antimicrobial spectrum: anaerobic bacteria (gram negative and gram-positive)

CHLORAMPHENICOL

A broad spectrum antibiotic with the potential of causing FATAL aplastic anemia. Use of the drug is limited to treatment of severe infections for which less toxic drugs are ineffective.

AMINOGLYCOSIDES

Mechanism of action: disruption of bacterial protein synthesis.

Antimicrobial spectrum: aerobic gram-negative bacilli (E.Coli,Klebsiella pneumoniae,Proteus Mirabilis,Pseudomonas Aeruginosa).The drugs are inactive against most gram-positive bacteria.the drugs are ineffective against anaerobes.

SULFONAMIDES AND TRIMETHOPRIM

Sulfonamides

<u>Mechanism of action</u>: suppression of bacterial growth by inhibiting synthesis of of folic acid (required for the synthesis of DNA, RNA, proteins).

Antimicrobial spectrum: broad antibiotics

Therapeutic uses: urinary tract infections

Trimethoprim

<u>Mechanism of action:</u> inhibitor of dihydrofolate reductase (-->suppresses bacterial synthesis of DNA, RNA and proteins).

<u>Therapeutic uses:</u> it is approved only for initial treatment of acute uncomplicated urinary tract infections due to susceptible organisms (E. coli, Proteus Mirabilis etc).

Trimethoprim-sulfamethoxazole

Therapeutic uses: urinary tract infections, otitis media, bronchitis, shingellosis, pneumonia, Pneumocystis Carinii pneumonia.

Antituberculus drugs

<u>Isoniazid</u>

Therapeutic uses: prophylaxis and treatment of tuberculosis.

Adverse effects

Peripheral	Neuropathy	(dose-related):	peripheral	paresthesi	as of	hands	and	feet,
cluminess,	unsteadiness	s, muscle aches	(->admini	ster pyrido	xine).			

☐ Hepatotoxicity (incidence increases with age)

Dr. Basim Mohammed Hanon

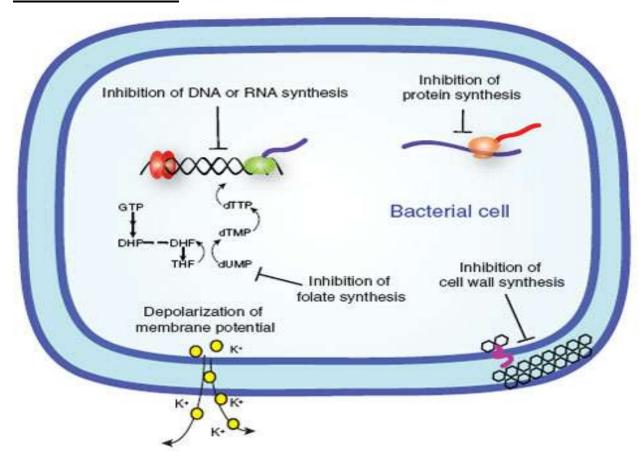
Rifampin

Therapeutic use: treatment of tuberculosis and leprosy.

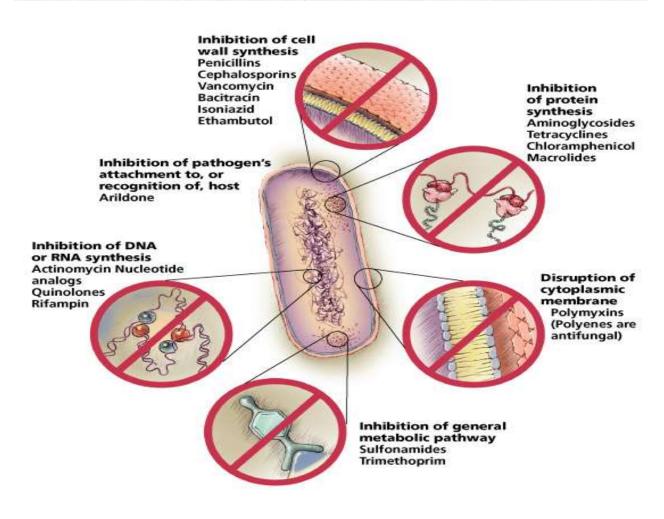
Fluoroquinolones

Ciprofloxacin

Mechanism of action: inhibits DNA replication


Therapeutic uses: infections of respiratory tract,GI tract,bones,joints,skin and soft tissues.

Metronidazole


Mechanism of action: inhibition of nucleic acids synthesis.

Therapeutic uses: The drug is active against obligate anaerobes only. It is used in CNS infections, abdominal organs, bones, joints, skin, and soft. tissues and genitourinary tract. It is used in combination against Helicobacter Pylori.

Mechanism of action

Antibiotic or synthetic drug	Mechanism of action	Target bacteria		
Penicillin	inhibits cell-wall synthesis	Gram-positive bacteria		
Ampicillin	inhibits cell-wall synthesis	broad spectrum		
Bacitracin	inhibits cell-wall synthesis	Gram-positive bacteria; used as a skin-ointment		
Cephalosporin	inhibits cell-wall synthesis	Gram-positive bacteria		
Tetracycline	inhibits protein synthesis	broad spectrum		
Streptomycin	inhibits protein synthesis	Gram-negative bacteria, tuberculosis		
Sulfa drug	inhibit cell metabolism	bacterial meningitis, urinary- tract infections		
Rifampin	inhibits RNA synthesis	Gram-positive bacteria and some Gram-negative bacteria		
Quinolines	inhibit DNA synthesis	urinary-tract infections		

Table 10.4	Antifungal Drugs	
Drug	Description and Mode of Action	Clinical Considerations
Antifungal Drug	gs That Inhibit Cell Membrane	
Polyenes	Associate with molecules of	Spectrum of Action: Fungi
Representatives: Amphotericin B Nystatin	ergosterol, forming a pore through the fungal membrane, which leads to leakage of essential ions from the cell; amphotericin B is produced by Streptomyces nodosus	Route of Administration: Amphotericin B: IV; nystatin: topical
		Adverse Effects: Chills, vomiting, fever
Azoles	Antifungal action due to inhibition of ergosterol synthesis	Spectrum of Action: Fungi, G+ bacteria, and
Representatives:	ergosteroi syntnesis	parasitic protozoa
Miconazole		Route of Administration: Topical, IV
Ketoconazole		Adverse Effects: Possibly causes cancer in humans
Other Antifung	al Drugs	
5-Fluorocytosine	Fungi, but not mammals, have an enzyme that converts this drug into 5-	Spectrum of Action: Candida, Cryptococcus, Aspergillus
	fluorouracil, an analog of uracil that inhibits RNA function	Route of Administration: Oral
	inhibits that function	Adverse Effects: None
Griseofulvin	Isolated from Penicillium griseofulvum; deactivates tubulin, preventing cytokinesis and segregation of chromosomes during mitosis	Spectrum of Action: Molds of ringworm (tinea
		Route of Administration: Topical, oral
		Adverse Effects: None